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Acceleration methods are presented for solving the steady state incompressible equations. 
These systems are preconditioned by introducing artilicial time derivatives which allow for a 
faster convergence to the steady state. We also consider the compressible equations m conser- 
vation form with slow flow. Two arbitrary functions CI and /I are introduced in the general 
preconditioning. An analysis of this system is presented and an optimal value for fi is deter- 
mined given a constant CI. It is further sown that the resultant incompressible equations form a 
symmetric hyperbolic system and so are well posed. Several generalizations to the com- 
pressible equations are presented which extend previous results. ‘? 1987 Academic Press, Inc 

1. INTRODUCTION 

In this study we consider ways of reaching a steady state for the incompressible 
fluid dynamics equations and also for low Mach number compressible flows. 
shall only consider time-marching schemes that are represented by hyperbolic 
systems. Chorin [6] developed the artificial compressibility method which is further 
discussed by Peyret and Taylor [lo]. We consider generalizations of this method 
by allowing artificial time derivatives in all the equations and not just the con- 
tinuity equation. This allows for faster convergence and also facilitates a uniform 
treatment for both primitive variables and conservative variables. It is shown that 
the resultant equations form a symmetric hyperbolic system and so is well posed for 
both primitive and conservative formulations. 

We next consider compressible flow with very low Mach numbers. As is well 
known, this system is stiff due to the large ratio of the acoustic and convective time 
scales. A number of people have considered preconditionings of these equations in 
various special cases, e.g., Viviand [20], Briley et al. [2], Choi and Merkle [4, §], 
Rizzi [ 131, and Turkel [ 17, 193. In this study we generalize these various 
approaches. In all cases we consider primitive variables p, U, v, plus an additional 
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variable. After the analysis is complete it is shown how one can reformulate the 
system in conservation form. 

As pointed out by Briley et al. [2], it is necessary to nondimensionalize the 
equations so that the pressure does not go to infinity as the Mach number goes to 
zero. In [2] this is accomplished by choosing (p, tP, U, u, h,) as the dependent 
variables. In this study we shall concentrate on (p, U, U) variables or else the conser- 
vation variables (p, pu, pu, E). Instead, in the Runge-Kutta code [S] the variables 
used are nondimensionalized so that p = p = 1 in the far field. 

2. INCOMPRESSIBLE FLOW 

In this section we consider the incompressible inviscid equations. Extensions to 
the viscous equations will be considered later while the following sections will dis- 
cuss the effects of compressibility. We will only consider time-independent solutions. 
Nevertheless, since we shall discuss time-marching algorithms we begin with the 
time-dependent incompressible inviscid equations, 

u, + U,” = 0 

ut+uu,+uz4y+p,=o 

u, + uu, + uu?, + py = 0. 

(2.1) 

These equations can also be written in conservation form as 

u, + u, = 0 

24, + ( u2 + p), -t (uu), = 0 

u* + (uu), + (u2 + p), = 0. 

(2.2) 

In this study we shall only consider smooth solutions to the systems (2.1) and (2.2). 
The only discontinuous solutions of interest are contact discontinuities, vortex 
sheets, etc., which are essentially linear phenomena and so are extensions of smooth 
flows. Shocked flows are not of interest for these equations and hence, the systems 
(2.1) and (2.2) are identical. 

Since we are only interested in steady solutions we will modify the time 
derivatives that appear in (2.1) and (2.2). The simplest such modification is the 
pseudo-compressibility approach which adds a pressure time derivative to the con- 
tinuity equation [6, 10, 151. Then all the equations can be marched in time until a 
steady state is reached. We shall consider generalizations of this technique. All the 
time-dependent equations that we consider form hyperbolic systems. Since there is 
no decay mechanism except for boundaries we can accelerate to a steady state only 
by increasing the allowable time step. By normalizing the fastest speed it is shown 
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in [19] that we accelerate the convergence when all the speeds are close together in 
absolute value. Conversely, the worst convergence occurs when the speeds of the 
system differ by orders of magnitude. It is also shown in [ 191 that in order to have 
a well-posed problem that is compatible with the steady state, especially in terms of 
boundary conditions, it is desirable to have a symmetric hyperbolic system. For a 
symmetric hyperbolic system, when the preconditioning matrix is positive definite 
we are guaranteed that we have not changed the appropriate number of boundary 
conditions and that we have not introduced any nonphysical time reversals. 

We therefore consider the following extension of system (2.1) 

1 
7 pt + u, + u, = 0 
B 

CIU 
~p~+u,+uu,+vu,+g,=o 
P 

CW 

~p,+u,+uu,+vv,+p,=o. 
P 

(2.3) 

Here, c1 and /? are functions to be determined. When, CI = 0 we recover the standard 
pseudo-compressibility method and we need only determine /?. To form a conser- 
vation system we multiply the first equation by u and also v and then add to the 
second and third equations, respectively. The resulting system is 

1 
--Qr+u,+u,=O 
P 

(a+l)u 
~~t+u*+(U2+p),+(Uv~~~=0 

B 

(cc+ l)u 
~~I+vt+(UU)x+(V2+~)y=0. 

P 

(2.41 

Note 1. The system (2.4) is not truly conservative for time-dependent flows. 
However, we have in any case destroyed the time accuracy and the system is fully 
conservative in the steady state. 

Note 2. Even for the original pseudo-compressibility approach, LX= 0, one 
should add pressure time derivatives to the momentum equations in the conser- 
vation form. Some authors, e.g., [4, 131 have not added these derivatives which 
amounts to choosing CI = -1. 

Note 3. We shall do all the analysis on the nonconservative system (2.3). All 
the results will be equally valid for the conservative system (2.4) with the 
appropriate a and /?. 
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We first rewrite (2.3) in vector form as 

(2.5) 

or 

with 

E-‘w,+A,w,+B,w,=O (2.6) 

w= (p, 24, vy. 

Multiplying (2.6) by E we rewrite (2.5) as 

(2.7) 

or 

with 

w,+ Aw,+ Bw,=O (2.8) 

A = EAo, B= EB,. 

In order to consider the wave speeds of (2.7) we Fourier transform the system. 
The wave speeds of (2.5) are given by the eigenvalues of 

D=w,A+o,B, -1 <Loi, 0,6 1, (2.9) 

where or, IQ are the x and y components of the Fourier transform variable. 
Defining 

q=uo,+vo,, (2.10) 

we find that the eigenvalues of D are 

4 = 4, (2.11a) 
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and 

d, =#-(1 -a)qlJ(l -cx)2q2+4/?2-J (2.11b) 

Remark. In the special case 01= 1, we have d, = 4-p and so the “acoustic” 
sound speed is isotropic and independent of the flow velocity. 

We note that for all values of CC and /I, d, and d- have opposite signs, i.e., 
d, . d- = -j?’ is always negative. This corresponds to subsonic flow for a com- 
pressible fluid which is appropriate for the incompressible case being considered. 

We next consider the choice of /?. We consider c( as given and we wish to c 
a to minimize the largest possible ratio of wave speeds. Thus, we wish to choose p 
so as to minimize max( ldJd,\), i, j= 0, +. After some algebra we find that the 
appropriate /? is given by 

8” 
i 

2 - M, CI < 1, with condition no. 12 -‘xl 
7= 9 % a > 1, with condition no. a. 

(2.12) 

Formula (2.12) is not useful since q, given by (2.10) is a function of the Foruier 
variable (oi , 02), while p must be given in physical space. Kence, we replace (2.12) 
by 

-e-= 2 - Lx, Or<1 (2.13a) 
u2 + v2 a, a> 1. (2.13b) 

The ratio of the fastest to the slowest speed now also depends on the ratio 
(u’ -k u2)/q2 and will be larger than given in (2.12) unless q2 = u2 + u2. 

Remark. It follows from (2.12) that the optimal a is CI = 1 in which case the con- 
dition number is one, i.e., all the speeds have the same magnitude. Since /? cannot 
be a function of the Fourier variables we must use (2.13) which means that the con- 
dition number is a function of 01/02. Nevertheless, this is still the best result for a 
range of Fourier modes in multidimensions. We remind the reader that the original 
artificial compressibility corresponds to CY =0 for the primitive variables and to 
M = -1 for the conservative variables. 

We note that in all these formulae /I’ is not constant but rather is a function of 
the speed, u2 + v2. To avoid difficulties near stagnation points (2.13) must be 
modified so that p cannot approach zero. For example, (2.13) can be changed to 

max[(2 - CX)(U’ + v’), E] a<1 
Kmax[cl(u2 -I- v2), E] a& 1. 

(2.14) 

On dimensional grounds E should be a fraction of (u2 + v2)maX. From later con- 
siderations, (2.16), K should be chosen slightly larger than one. 

Until now we have only discussed the wave speeds, i.e., the eigenvalues of 
(2.9). We have shown that these eigenvalues are always real and so (2.5) is a 
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bolic system. We next wish to find out whether the system can be symmetrized. 
Gottlieb and Gustaffson [7] have suggested a general technique to check if a 
system can be simultaneously symmetrized. A necessary condition is that A and B 
can each be separately symmetrized. Since A can be symmetrized it can also be 
diagonalized. Furthermore, the diagonalization of A is unique except for exchanges 
of rows and columns and also an additional similarity transform using diagonal 
transformations. Thus after A has been diagonalized one only need check if B can 
be symmetrized by a diagonal similarity transform. 

We first need the eigenvectors of A. This is also useful for constructing charac- 
teristic boundary conditions. If follows from (2.11) that 

a, = u 

a += 
(1 -a)u-&,/(l-a)%*+4/?* 

2 

are the eigenvalues of A in (2.8). Let 

(2.15) 

T= 

/ 1 
I - 

1 

a+ -al 
-1 

a+ -a- 
-C% 

\ 
(u-a,)(u-a_) 

a+ 0’ 
a+ -a- 

-a- 
0 

a+ -a- 
- auv 

(u-a+)(u-a-) ’ 
-- 

-a- -a+ 0 

Then det( Tp’) = J( 1 - a)*y* + 48* # 0 and so the transformation is nonsingular. 
Furthermore, the columns of T-’ are the eigenvectors of A. It then follows that 

TAT-’ = 

i a+ 0 0 a- 0 02.4 0 0 1 

and 

i 

(1 -a)a+v (1 + a)a: v -a+(u-a+) 

a+ -a- @+ -a-)(u-a-) a+ -a- 

TBT-‘= 
-(l +a)a2v -(l -a)a-v a-(u-a-) 

(a+ -a-)(24--+) a+ -a- a+ -a- 
ava _ ava + 

-ae-(u-a+)(u-aa_) -a+-(u-a+)(u-a-) ’ 

Let D, = diag(d,, d2, d3) with 

d, =a- (a+ -a-)(u-a-), d*=a+,/(a++ -a-)(a+ -u), 

&=(a+ - u)(a- - 2.4) -ata-/(/?*-a(u2+v2)). 
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Then D, TAT-‘DC’ is still diagonal, while D, TBT-‘D;’ is now symmetric. It 
follows from the definition of a,, a _ that a + > 0 > a _ . It can then be shown that 
D, is real and hence the system is symmetrizable if and only if q2 6 d2, for all 
(~0~) w2) or, equivalently, 

p2 > a( u2 + u2). (2.16) 

We note that from (2.13) we have, that the optimal /3, for a > 1, is gotten by 
choosing an equality in (2.16) rather than an inequality. Hence, if one wishes the 
system to be both close to optimal and symmetrizable we should choose /?’ sli~btly 
larger than u2 + v2. Furthermore, for CI < 1, (2.13a) implies (2.16) automatically. For 
a < 0, (2.16) is always satisfied for all /I. 

When using an explicit method we need an upper bound on the largest eigen- 
value of D. A typical explicit scheme has a stability criterion of the form 

$5 
A ‘d,’ 

(2.17) 

where A is a typical mesh length and K is a constant that depends on the scheme. 
Using (2.1 lb) we replace d, in (2.17) by its upper bound 

d <(u2+u2) 
i’ 2 [(I - a + J( 1 - a)’ + 4p2/(uZ + u2)] 

with p2/(u2 + u’) given by (2.14). If we use a general curvilinear mesh then t 
corresponding formula is given by (3.20), with c = co. 

The previous discussion has been scheme-independent and relied only on 
equalizing the wave speeds for the differential equation. We now discuss the 
implementation for some difference schemes. For an explicit scheme the time step is 
restricted by the fastest moving wave. Thus, the previous analysis insists that the 
time step chosen by a stability analysis should not be inappropriate for the slower 
waves. If the wave speeds differ significantly then the slower waves will propagate 
very slowly and convergence will also be slow. Furthermore, for most explicit 
schemes the damping of the scheme is small for small dt and so the slowly rn~vi~~ 
waves will not be damped very much. Hence, our analysis is certainly appropriate 
for standard explicit schemes. 

Using an implicit method it is less clear that the stiffness of the system matters. If 
one uses a backward Euler method then one can show [S] that for larger At that 
one approaches the classical Newton-Raphson iteration scheme. In this case the 
convergence is not very affected by the stiffness of the system. In [4] computations 
are presented that show fast convergence for one-dimensional problems. However, 
in multidimensions it is not practical to invert the matrix that one gets using a fully 
implicit scheme. Instead one frequently uses an ADI-type algorithm. In this case 
one should not choose very large At [16], but rather one close to the explicit 
Courant condition. This occures because of the (At)2A.B term that is created by the 
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splitting. Hence, again a At that is appropriate for the fast waves is inappropriate 
for the slow waves. Hence, our preconditioning which will equilibrate the wave 
speeds will also accelerate AD&type methods. Using the notation of Beam and 
Warming [1], we write an implicit scheme for (2.4) as 

[E-‘iAt(-&+$B$lAw= -At(fi+g;), (2.17) 
/_I 

where Aw = W” + ’ - wn, 

f= 

We rewrite (2.17) as 

E-’ I+At E’-&;+E”%B; 
[ ( ay )I Aw = -At(fl: + g.;). (2.18) 

We now apply an approximate factorization to (2.18) and ignore errors in the 
conservation form of the left-hand side to get 

E-’ I+A+A, 
[ li- I+At-$EB, 

1 
Aw= -At(fl+g;). (2.19) 

Since the matrices E, A = EA,, and B = EBo are well conditioned there is no way 
that the splitting error can slow down the convergence compared with the standard 
AD1 splitting. 

For a =0 we need only invert 2 x 2 blocks. For general CI we can use the 
factorization suggested by Pulliam and Steger [ll]. Hence, 
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can be diagonalized, i.e., UAW1 = D1 and VAT’ = D,. Ignoring, again, conser- 
vation errors in the left-hand side of (2.19), we rewrite (2.19) as 

E-lU I+At&D, 
i 

V-‘AWE -At(f;+g”,) (2.20) 

and so we need only invert scalar tridiagonal matrices rather than block tridiago~a~ 
matrices. 

In practice one usually solves the viscous equations rather than the i~visci 
equations. The easiest remedy is simply to add the viscous terms to the right-hand 
side of (2.19). One usually finds, for large Reynolds numbers, that the time step is 
restricted only by the inviscid terms. Hence, there is no need to include a viscous 
Jacobian on the left-hand side of (2.19). Furthermore, the preconditioner, I?, still 
equilibrates the inviscid time steps and reduces the splitting error in (2.19). 

We next consider the implementation of the scheme on a staggered mesh (see 
Fig. 1). The steady state equations are independent of Dt and so we retain the 
improved accuracy of the staggered grid independent of our treatment of the time- 
marching algorithm. Thus, for example, we discretize the x-momentum equation in 
0.3) by 

“L + 1j2.J ( P::,‘,, - P:, 1.1 + P 

2b?+ 1/2,J At 

+ usual space differentiation = 0, (2.21) 

where 

and K, is a function of CI given in (2.14). Using an explicit scheme pt at (i, j) is 
already known from the first equation. With an implicit scheme we now have con- 
tributions of pt in the momentum equations which contribute to both the diagonal 
and off-diagonal blocks. 

V 

FIGURE 1 
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In this section we have only considered Cartesian coordinates. The extension to 
general curvilinear coordinates is straightforward. This will be done in the sections 
on compressible flow which will contain the incompressible case as a limiting 
solution. Here we shall only show that the matrices are simultaneously sym- 
metrizable in curvilinear coordinates whenever they are symmetrizable in Cartesian 
coordinates. Consider the equation in Cartesian coordinates (X, Y), 

w,+Aw,+Bwy=O. (2.22) 

Let x=x(X, Y), y = y(X, Y) be general coordinates then 

w,+A,w,+B,w,=O (2.23) 

with 

A,=Ax,+Bx,, B,=Ay,+By.. (2.24) 

Since A, and B, are linear combination of A and B it follows that whenever A and 
B can be symmetrized simultaneously so can A, and B,. 

3. COMPRESSIBLE (p,u,u,S) SYSTEM 

In the previous section we have considered incompressible flow where the 
unknowns are (p, U, a). We next consider the compressible equations concentrating 
on low speed flow. Since our analysis is local we need only consider flows that 
locally have a small Mach number. The flow can even be supersonic in other 
regions. Hence, it is useful to consider the conservation form of the equations. In 
considering the compressible equations we need an additional unknown. Three 
possibilities are entropy S, or density p, or else to use Bernoulli’s law stating that 
the total enthalpy is constant, i.e., isoenergetic flow. In all cases we shall ultimately 
cast the equations in conservation form but the three possibilities lead to different 
preconditioning. As before we shall do the analysis on the primitive variables and 
only at the end shall we derive the conservation variable version. In this section we 
consider the (p, U, u, S) system while the other possibilities are discussed in later 
sections. 

The time-dependent Euler equations can be written in Cartesian coordinates 
(X Y) as 

1 
--zp*+ 
PC 

-$(~Px+up,)+u,+v,=O 

u,+uu,+vu~+p,/p=o 

u,+uv,+vv.+py/p=o 

s,+us,+vs,=o, 

(3.1) 
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P = P(P, a. 

We now introduce curvilinear coordinates x=x(X, Y), y = y(X, Y). The Euler 
equations in (x, y) coordinates are 

J 
,p,f-$WPd- VPy~+~.~y,-~.~~y--uyY.~++zlpxx=o 
PC 

Jut + uux + v0.v -+ (P, yv - py WP = 0 
Jut + uvx + Vu,, t- (-P,X,, + p,x,)/‘p = 0 

(3.2) 

JS, f US, -+ VS, = 0, 

where p = p(p, S), and 

U=uY,-vx,, v= -uY, -I- vx,, J- X, Y,. - X, Y,. (3.2a) 

We precondition this system by a generalization of (2.5). We thus obtain 

V 

ppi 
-Y, xx 0 

- Y,.p v 0 0 
-t 

xx 
-7 0 vo 

0 0 0 v 

ii 

P 

u 
= 0. 

V 

s 

(3.3) 

Since the entropy decoupIes on the matrix level (we freeze coefficients and then p 
no longer depends on S), for stability theory we can reduce (3.3) to the simpler 
equivalent form 
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(3.4) 

We note that (3.4) is very similar to (2.5). In fact, setting c = fi and p = 1 and using 
Cartesian coordinates, (3.4) reduces to (2.5). As before, we rewrite (3.4) as 

JE-‘w, + Aow, + Bow, = 0. (3.5) 

Multiplying (3.4) by E, we obtain 

Jw,+Aw,+Bw,,=O (3.6) 

with w = (p, U, v)~ and 

P’U 
2 

C 

A =EAo= 
-auU Y” 
2+- 

PC P 
-avU x, 

pc2-p 

I p=v 
2 c 

-auv Y, 
pc2-p 
-WV A-, 
2+- 

PC P L 

PP’Y, -PB2X, 

-cur, + u auxy 2 

-avY, avx, + 
1 

u 

-PP2Yx PP”L 

aur, + v -culx, ) 

WY, 

i 

-cwx, + v 

(3.7) 

and the Jacobian J is given by (3.2a). To find the wave speeds we again examine the 
eigenvalues of 

D=w,A+w,B, -l<w,, w,Ql. (3.8) 
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We define 

and 

I, = YyWl - Yxw*, I* = -x-p, +x,0, 

(3.9) 

q=uo,+ Vo,=uZ,+ul,; 

U and V were defined in (3.2a). Then the eigenvalues of D are 

4 = q 

and 

We note that without preconditioning we have 

Remark. If we consider the special case Lx = 1 + /P/c” 1: 1, then 
di = -+fl,,/wi N +/?,,/m for low speed flow. Hence, the acoustic 
waves moves with a speed independent of the velocities u and v and this wave is 
isotropic except for grid effects. Also, we note that (3.10) is independent of c. 

We also know that 

For subsonic flow d, and d- have the opposite signs. In fact 

d, dp = -(I: + I; - q2/c2)p2 < 0 

whenever u2 + v2 < c*. For an orthogonal mesh XXX, + Y, Yy=O and so the 
expression for L2, (3.11) simplifies. 

We next consider the choice for p. We wish to choose /3 so as to minimize the 
largest possible ratio of the wave speeds, i.e., to minimize the maximum of the ratio 
of the d’s in (3.10). In order to simplify the algebra we assume that q2/c2 4 1, i.e., 
slow flow, we also assume that /?‘/c’$ 1. The optimal /I is the computed as (cf. 
W2)), 

B’G+I:)= 
i 

2 - GI + Q( q2/c2) a<1 

q2 a+ O(q2/c2) a> 1. 
(3.12) 

The condition number is the same as (2.12) to within O((/?’ + q2)/c2). Similar to the 
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incompressible case, (3.12) is not of immediate use since I,, I,, and q all depend on 
the Fourier variable (wl, CD*), see (3.9). Instead, we suggest using 

_B’Lz= 
i 

2-a ol<l 
u sv a ad 1, 

(3.13) 

where L is given in (3.11). 
We next rewrite (3.3) in terms of the conservation variables (p, pu, pv, E) with 

E= p/(y - 1) + (p/2)(u2 + v2). We then obtain 

J + I;;, + G, = 0, (3.14) 

where F and G are the standard Euler fluxes in curvilinear coordinates, J is the 
Jacobian, and 

zl=(y-1) ‘-1 ( ) p” c2 
z2+l)(5$-+zl+~ 

(3.15) 

z3=b-l) 
-L&-q+(?E$;)(y) 

=z,h+(y-l)a(u2+v2)/B2, 
C2 h=- u2 + v2 

y-1+2* 

Thus, as expected, we recover the correct steady state equations. We can also 
eliminare pt in (3.14) and obtain equations only in terms of pt, (pu),, (pv),, and E,. 
We then have 

(3.16) 
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where Z is the identity matrix and 

i 

R22, -uz1 -vz1 Zl 

Q= 
R2z,u -u2z2 -uvz2 z2u 

R2z2v -uvz2 -v2zz z2u 
(3.17) 

R%, -UZ3 -vz3 z3 

and R2 = (u’ + v2)/2. When a = 0 and 8” = u2 + v2 this reduces to the preco~ditio~er 
found in [IS] by a different technique. We note that for CI = 0 the optimal fi given 
by (3.13) is /?’ = 2(u2 + v2)/L2. Furthermore, we can invert I-+ Q simply to get 

Because of the structure of Q we can multiply Q times a vector using seven 
tiplications. 

As before, the stability criterion for a typical explicit scheme for (3.16) has t 
form 

$kKld+, (3.19) 

where K is a constant that depends on the scheme. It follows from (3.9)-(3.11) t 

df< 
J‘ 

2K 

where L is defined in (3.11), is a sufficient condition for stability. For slow 
flow we can ignore all terms of the order ( U2 + V2)/c2 and f12/c2. Also since 
O(u* + v2) by (3.13), we see that At is independent of c and depends only 
local velocity. As pointed out previously the special choice a = 1 + /?“/c” sirn~~~es 
the formulas. We then find that 

df< K 

J ‘~JL’--(u’+ v2)/c2 
for a = 1 + fl’jc”. 

As long as the flow is subsonic the square root is meaningful. 
As is the incompressible case we find that the matrices A and m be 

simultaneously symmetrized when 

fi’ > cr(u2 * v2). (3.22) 

In forming the preconditioned system (3.16) we eliminated the pressure term in, 
from (3.14). Since we are not interested in the time-dependent solution we can 
instead eliminate p f, 

u2 + v2 
i > 2 PC= Pt -I- u(pu), f v(/k), - E,. 

Y-1 
(3.23) 

581/72/2-2 
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AS before, we need to do something spcial in the neighborhood of stagnation 
points. This system now solves for (p, pu, pv, E) and so is more similar to the 
incompressible limit. 

4. COMPRESSIBLE (p,u,v,p) SYSTEM 

In the previous section we appended the entropy equation to the incompressible 
(p, U, V) equations and did not precondition the S equation. This had the benefit 
that the entropy equation decoupled and so even in the compressible case we 
needed to only consider three equations (see (3.2)-(3.4)). Choi and Merkle [4, 51 
have discussed a (p, U, 0, p) formulation which we now analyze in more detail. 

Again considering curvilinear coordinates x = x(X, Y) and y = JP(X, Y), the Euler 
equations are (compare with (3.2)): 

J 
jpi+--$(up,+ vp,)+u,Y,-u,x,-u,Y,+u,x*=0 
PC 

Jut + Uu, + Vu, + (p, Y, - py Y,)/p = 0 

Jut+ Uv,+ Vu,+(-pxXy+p,X,.)/p=O 
(4.1) 

JP, + UP, + Vpy + p(u, Y, - ox& - uy Y, + 0,x,) = 0, 
where 

U=uY,-Is,, v= -uY,+vX,, J=XxYy-XyYx. 

We precondition this system similar to (3.3), where again the last equation is not 
preconditioning. Thus, we are now not changing the p equation rather than the S 
equation of (3.3). We then obtain 

pc2 
-Y, x, 0 P 

- Y*/p v 0 0 U 

+ 

t io 
= 0. 

Xx/P 0 Jf 0 V 

0 --Pyx PXX v p Y 
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In order to facilitate comparisons with (3.3) we change variables in (4.2) to a 
(p, U, u, S) system. Formally, we define S = in[p/@‘J and so dp = (l/c’)(dp - p&B’). 
Substituting into (4.2) we get 

P 

u 

~0 
cl Y -4 

PC2 y y 

Y-)./p u 0 0 

+ 

V qP 0 rJ 0 

s t 0 0 0 u 

(4.3) 

V 

pc2 
-Y, xx 0 P \ 

- WP v 0 0 u 

+ 

I 

= 0. 

X.x/P 0 v 0 V 

Comparing (3.3) with (4.3) we see that using the (p, U, V, p) formulation has 
introduced an additional pt preconditioning into the entropy equation. Hence, the 
entropy equation no longer decouples from the previous three equations. This com- 
plicates the analysis. The advantage of the (p, U, a, p) is that it simplifies the precon- 
ditioning in conservative variables as will be seen later. Solving for (p, u, v, S), we 
find 
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or (4.4) 

Jw, + Aw, + Bw,. (4.5) 

Comparing the matrices A and B of (3.6)-(3.7) with that of (4.4~(4.5) the eigen- 
values of any linear combination of A and B are unchanged since the last column 
has zeros except for the corner element. Hence, all the preconditionings that were 
considered before in Section 3 are equally efficient for the (p, U, u, p) system. In par- 
ticular, an optimal /I is given by (3.13) and the time step restriction for a typical 
explicit method is given by (3.20) and (3.21). 

We now rewrite our preconditioned (p, U, U, p) system (4.2) in terms of conser- 
vation variables. This becomes 

Pt \ 

5 Pt + (PU), 

i 

2 Pt + (PU), 

$P,+& 

with 

i 

+I;,+G,=O (4.6) 

(compare (3.15)). Eliminating pt in (4.6) we find that 

(4.7) 

(4.8) 
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where 2 is the identity matrix and 

0 0 0 0 

Q= 
R2z,u -u2z2 -uvz2 z2u 
R2z,v -uvzz -v2z2 z2v 

R%, -24273 -vz3 -13 

and R2= (u” + v2)/2. Comparing (3.14)-(3.17) with (4.6)-(4.9) we see that t 
(p, U, v, p) system leads to a simpler preconditioner than does the (p, U, v, S) 
system. Choi and Merkle [4] pointed out that in the special case a = 0, that only 
the energy equation is modified, i.e., z2 = 0 when CI = 0. As before 

(4.10) 

5. COMPRESSIBLE ISOENERGETIC SYSTEM 

In the two previous sections we have considered two possibilities for adding an 
additional differential equation to the incompressible equations. A different 
possibility is to use the fact that for the steady state Euler equations, when the flow 
originates from a common reservoir, the specific total enthalphy, h = (E+ p),/p, is 
constant throughout the flow. Since we are only interested in steady state solutions, 
we can assumed that h = h, for all time. Such equations have been analyzed by 
Gottlieb and Gustaffson [7] and also Briley et al. [2], Viviand [20], and Rizzi 
and Eriksson [;?I. Taking as our unknowns (p, U, v) the equations become in a 
general coordinate system (x, JJ), 

Ju, + Uu, + Vu, + ( p, Yy - pu Y,)/p = 0 (5.1) 

Jv, + Uv, + I/u, + (-p,.X, + p,x,)/p = 0, 

where 

u=uYy-vxy, v= -UY, + vx,, J=X,Y,-X,Y,, 

and 
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Using a preconditioning similar to that of the previous sections we consider 

i 

1 
Loo 
PB2 
au 

pp’ 
1 0 

o/* 
pc2 

0 1 

(5.3) 

i 

V 

pc2 
-Y, xx’ 

+ - YJP v 0 

We see that the form of (5.3) is identical to that of (3.4). The only difference is that 
the coefficient p in (3.4) satisfies p = p(p, S) while in (5.3) p is given by (5.2). 
However, the eigenvalue properties of the two systems are identical. In particular, it 
is evident from (5.3) that in the absence of preconditioning, i.e., /I = c and CI = 0, 
that (5.3) is simultaneously symmetrizable. In [7] there was an algebraic error and 
it was claimed that the isoenergetic system could not be symmetrized. In [19] we 
presented the matrices that would symmetrize the isoenergetic equations written in 
conservation variables. The proof of symmetry is more obvious when (p, u, v) 
variables are used as in (5.3). Furthermore, it follows from our previous results that 
(5.3) is symmetrizable for all CC and /I subject to the restraint (3.22). 

We can rewrite (5.3) in terms of the conservation variables (p, pu, pu) as 

(5.4) 

where 

z1 =A 
[ 
c2-p2+ f!y (u’+ vq 

and 

2 =zl+a”-!!(h,-~)=zl+~,~2. 2 (5.5) 
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It follows from (5.2) that 

We can, therefore, rewrite (5.4) so that only time derivatives of p, pu, po appear. 
We thus rewrite (5.4) as 

where Z is the identity matrix and 

Q=y-I 

i 

R22, -2fz1 

Y 
uR=z, -u2z2 

vR=z, - uvz2 

where R2 = h, + (u* f v2)/2. It also follows that 

(Z+Q)-‘=z-$@ (5”8) 

As pointed out at the end of Section 3 we can, from (5.6), use pt instead of pt. Su 
stituting into (5.4) we get a system which is similar to the incompressible equations. 
Now there is no difficulty near stagnation points. 

6. CONCLUSION 

In the previous sections, we have presented a unified theory of preconditioned 
methods for both incompressible and slow compressible flows. The pseudo-com- 
pressibility method for incompressible flow has been used by many authors, e.g., [3, 
6, 151. The original method and many examples are described in detail by Peyret 
and Taylor [lo]. The work described here generalizes these previous works and 
hence there are many computational results to show the effectiveness of such an 
approach. 

For the compressible equations at low Mach numbers several authors have also 
demonstrated the effectiveness of different preconditioners that correspond to the 
case c( = 0. Briley et al. [2] consider the isoenergetic equations. They present results 
using an implicit method for the Navier-Stokes equations with an algebraic tur- 
bulence model. Their preconditioning is covered by Section 5 of this study. Rizzi 
and Eriksson [ 121 based their preconditioning on a model of Viviand [ZO] for the 
inviscid isoenergetic equations. They present computational evidence of t 
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usefulness of the preconditioning for the Euler equations in both two and three 
dimensions. They used an explicit three stage Runge-Kutta algorithm to obtain 
their solutions. Furthermore, Choi and Merkle [4] analyze a (p, U, o, p) for- 
mulation and present results for nozzle flow using an implicit AD1 type algorithm. 
Their results are a subset of Section 4 with c1= 0. In [S] Merkle and Choi present 
an alternative approach to preconditioning that is effective for extremely small 
Mach numbers. 

We thus see that many authors have successfully used variations of pseudo- 
compressibility preconditioning for both the incompressible and compressible 
equations. The various approaches used in these papers have been unified and 
generalized in this study. 
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